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Graphical rule of transforming continuous-variable graph states by local homodyne detection
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Graphical rule, describing that any single-mode homodyne detection turns a given continuous-variable (CV)
graph state into a new one, is presented. Employing two simple graphical rules—local complement operation and
vertex deletion (single quadrature-amplitude x̂ measurement)—the graphical rule for any single-mode quadrature
component measurement can be obtained. The shape of CV weighted graph state may be designed and constructed
easily from a given larger graph state by applying this graphical rule.
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Graph states—or equivalently called stabilizer states—-are
a particularly interesting class of multipartite entangled states
associated with graphs [1,2] and play several fundamental
roles in quantum information such as one-way quantum
computation, quantum error correction, multiparty quantum
communication, quantum simulation, Bell inequalities theo-
rem, etc.

Continuous variables (CVs) are a promising new flavor
of quantum information, whose potential is still largely
unexplored. CV cluster and graph states have been proposed
[3], which can be generated by squeezed state and linear optics
[3,4] or optical frequency comb in an optical parametric oscil-
lator [5], and demonstrated experimentally for the four-mode
cluster state [6,7]. The one-way CV quantum computation
was also proposed with the CV cluster state [8–10] and
demonstrated with Gaussian operations experimentally [11].

It is well known that Clifford operations or projective
measurement associated with operators in the Pauli group
can be described by the stabilizer formalism. For example,
the action of local Clifford operations on qubit [1,12] or
CV [13–15] graph states can entirely be understood in terms of
a single elementary graph transformation rule, called the local
complement rule. Moreover, any measurement of operators
in Pauli group turns a given qubit graph state into a new
one [1,2]. The graphical rule also can describe the effect
of Pauli measurement on the qubit graph states. Since CV
graph states have many different properties from the qubit,
many concepts and methods for qubit cannot be extended to
CVs directly. For example, the CV weighted graph states
can be expressed by the stabilizer formalism [14]. It is
distinctively different from the qubit weighted graph states,
which cannot be expressed by the stabilizer formalism. In this
paper, how to graphically describe the effect of local Pauli
measurements (local homodyne detection) on the ideal (i.e.,
infinitely squeezed) CV weighted graph states is investigated.

In order to conveniently describe our results, we briefly
review some basic elements of the theory of CV graph
states and operations which are needed in this paper
[3,13,14,16]. The single-mode Pauli operators are defined
as X(s) = exp[−isp̂] and Z(t) = exp[it x̂], where s,t ∈ R,
x̂ = (â + â†)/

√
2 (quadrature amplitude or position) and
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p̂ = −i(â − â†)/
√

2 (quadrature phase or momentum). The
Pauli operator X(s) is a position-translation operator, which
acts on the computational basis of position eigenstates as
X(s)|q〉 = |q + s〉, whereas Z is a momentum-translation op-
erator, which acts on the momentum eigenstates as Z(t)|p〉 =
|p + t〉. The Pauli operators for one mode can be used to
construct a set of Pauli operators {Xi(si),Zi(ti); i = 1, . . . ,n}
for n-mode systems. This set generates the Pauli group C1. For
k � 2, we can recursively define Ck as [17]

Ck = {U |UC1U
† ⊆ Ck−1}. (1)

For every k, Ck ⊃ Ck−1, and the set difference Ck/Ck−1 is
nonempty.

C2 is a group called the Clifford group, which is the
normalizer of the Pauli group, whose transformations acting by
conjugating, preserve the Pauli group. The Clifford group C2

for CV is shown [17] to be the (semidirect) product of the Pauli
group and linear symplectic group of all one-mode and two-
mode squeezing transformations. Transformation between the
position and momentum basis is given by the Fourier transform
operator F = exp[i(π/4)(x̂2 + p̂2)], with F |q〉x = |q〉p. This
is the generalization of the Hadamard gate for qubits. The
phase gate P (η) = exp[i(η/2)x̂2] with η ∈ R is a squeezing
operation for CV and the action P (η)RP −1(η) on the Pauli
operators is

P (η) : X(s) → e−is2η/2Z(sη)X(s),
(2)

Z(t) → Z(t),

in analogy to the phase gate of qubit. The controlled op-
eration is generalized to controlled-Z (CZ). This gate CZ =
exp[ix̂1

⊗
x̂2] provides the basic interaction for two-mode

1 and 2, and describes the quantum nondemolition (QND)
interaction. This set {X(s),F,P (η),CZ; s,η ∈ R} generates
the Clifford group. Here, the controlled operation with any
interaction strength CZ(�) = exp[i�x̂1

⊗
x̂2] (� ∈ R) will be

used in this paper. Another type of the phase gate will also be
utilized PX(η) = FP (η)F−1 = exp[i(η/2)p̂2] and the action
on the Pauli operators is

PX(η) : X(s) → X(s),
(3)

Z(t) → e−it2η/2X(−tη)Z(t),

where PX(η)† = PX(η)−1 = PX(−η).
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FIG. 1. (Color online) Example of a x̂450
measurement on vertex

a in a linear cluster.

A weighted graph quantum state is described by a math-
ematical graph G = (V,E) (i.e., a finite set of n vertices V

connected by a set of edges E [12]), in which every edge
is specified by a factor �ab corresponding to the strength of
modes a and b. The preparation procedure of CV weighted
graph states is only to use the Clifford operations: first,
prepare each mode (or graph vertex) in a phase-squeezed state,
approximating a zero-phase eigenstate (analog of Pauli-X
eigenstates), then, apply the QND coupling [CZ(�)] with
the different interaction strength �jk to each pair of modes
(j,k) linked by a weighted edge in the graph. The CV
unweighted graph states use the QND interaction all with the
same strength. Since all CZ gates commute, the resulting CV
graph state becomes, in the limit of infinite squeezing, ga =
(p̂a − ∑

b∈Na
�abx̂b) → 0, where modes a ∈ V correspond to

the vertices of the graph of n modes, while modes b ∈ Na

are the nearest neighbors of mode a. This relation is as a
simultaneous zero eigenstate of the position-momentum linear
combination operators. The corresponding n-independent
stabilizers for CV weighted graph states are expressed by
Ga(ξ ) = exp[−iξga] = Xa(ξ )

∏
b∈Na

Zb(�abξ ) with ξ ∈ R.
The local complement operation on vertex a of CV

weighted graph state is expressed by [14]

ULGa
(δ) = PXa(−δ)

∏

b∈Na

Pb

(
�2

abδ
)
. (4)

The action of this local complement operation on CV weighted
graph states can be stated in purely graph theoretical terms,
which completely characterize the evolution of CV weighted
graph states under this local complement operation. The graph
rule of applying this local complement operation on vertex
a is described: first obtain the subgraph of G generated by
the neighborhood Na of a, then reset the weight factor of all
edges of this subgraph calculated with the equation �′

bibj
=

�bibj
− �abi

�abj
δ, at last delete all the edges with the weight

factor of zero, and leave the rest of the graph unchanged.
Here, a subgraph G[C] of a graph G = (V,E), where C ⊂ V ,
is obtained by deleting all vertices and the incident edges that
are not contained in C.
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FIG. 2. (Color online) Example of a p̂ measurement vertex on a
linear cluster. The vertex 2 was chosen as the special neighbor b0.

First, we consider the simplest case of the quadrature-
amplitude (x̂) component measurement on vertex a of CV
weighted graph state. After the x̂ component measurement on
vertex a with the result xa by local homodyne detection, a CV
weighted graph state |G〉 will transform into another weighted
graph state |G′〉 = U (a)

xa
|G − a〉, where G − a denote the graph

that is obtained from G by deleting the vertex a and all edges
incident with a, and

U (a)
xa

=
∏

b∈Na

Z(b)(xa). (5)

Thus, in case of a measurement of quadrature amplitude
(x̂), the resulting graph can be produced by simply deleting
the measured vertex a and related edges from the graph,
then translating the measurement result into the momentum
component of the neighborhood vertices Na of a. Based on
the previously mentioned two simple graphical rules—local
complement operation and the single quadrature-amplitude
x̂ measurement (also called vertex deletion)—the graphical
rules for any quadrature component measurement can be
obtained as the following.

Any quadrature component of an optical mode is expressed
by

x̂θ = (âe−iθ + â†eiθ )/
√

2

= cos θx̂ + sin θp̂. (6)
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FIG. 3. (Color online) The graphical rule for a p̂ measurement
on a complex weighted graph state. The vertex 1 was chosen as the
special neighbor b0.

The basic idea of obtaining the graphical rules for any
quadrature component measurement is that, first transform the
quadrature-amplitude x̂ of vertex a into the measured compo-
nent x̂ ′ = cos θx̂ + sin θp̂ by local Gaussian operations, then
perform single quadrature-amplitude x̂ measurement (vertex
deletion). Now we first apply local complement operation
ULGa

(δ) on vertex a of CV weighted graph state. Thus the
quadrature amplitude of vertex a is transformed into x̂ ′

a =
x̂a + δp̂a , where δ = tan θ . Then we perform the quadrature-
amplitude measurement on vertex a with the detection result
x ′

a . The new graph is obtained by deleting the measured
vertex a and related edges from the graph, then translating

the measurement result x ′
a into the momentum component of

the neighborhood vertices Na of a. The new graph can be ex-
pressed by |G′′〉 = U

(a)
x ′

a
|G′ − a〉 and |G′〉 = ULGa

(tan θ )|G〉.
Figure 1 presents an example of a x̂450

measurement on a linear
cluster, which removes the measured mode and still keeps the
neighbor vertices to be joined.

Now considering the single quadrature-phase p̂ mea-
surement, it requires that δ approach infinite for the local
complement operation ULGa

(δ) on vertex a. Apparently it is
impractical. So we consider the different local operations to ob-
tain the graphical rule for a quadrature-phase component mea-
surement. First, one chooses any of neighbor vertex b or vertex
a, and applies a local complement operation ULGb

(−1/�2
ab)

on vertex b. Then one applies a local complement operation
ULGa

(1) on vertex a. Thus, the quadrature amplitude and
phase of vertex a are transformed into x̂ ′

a = p̂a , p̂′
a = p̂a − x̂a

by PXa(−1)Pa(−1). The new graph can be expressed by
|G′′〉 = U

(a)
x ′

a
|G′ − a〉 and |G′〉 = ULGa

(1)ULGb
(−1/�2

ab)|G〉.
An example of a p̂ measurement on a linear cluster is depicted
in Fig. 2. It is easy to see that two adjacent vertices combine
into a single vertex with the bonds attached to each. Figure 3
presents a p̂ measurement on a complex weighted graph
state.

In summary, the graphical rule of transforming the ideal CV
weighted graph state by any single-mode homodyne detection
is described. The graphical rule for any single-mode quadrature
component measurement is obtained by two simple graphic
rules: local complement operation and vertex deletion. This
work will be very helpful to specify which graph states can be
mapped by the single-mode homodyne detection and to apply
in one-way CV quantum computation.

Note added. Recently, another work appeared [18], where
two simple and special local homodyne measurements were
investigated experimentally.
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